If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+14x+1=0
We add all the numbers together, and all the variables
x^2+14x+1=0
a = 1; b = 14; c = +1;
Δ = b2-4ac
Δ = 142-4·1·1
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-8\sqrt{3}}{2*1}=\frac{-14-8\sqrt{3}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+8\sqrt{3}}{2*1}=\frac{-14+8\sqrt{3}}{2} $
| 44+53+m1=180 | | 3.5/6=10/x | | 37+124+m1=90 | | 37+124+m1=180 | | -6x+3=2(x-2)+3 | | 124+37+m1=90 | | 3x^2-25=275 | | 124+37+m1=180 | | -6+3=2(x-2)+3 | | 8^r=63 | | 3z-9÷-5=-2 | | O.8x+4=0.3x+3.5 | | 2(×+9)+5(x+2)=35 | | 6+(x-1)=3x-2 | | 0.8x+4=0.3×+3.5 | | -8+x+2x=-41 | | 20=4x^2+1 | | 20=4z^2+1 | | -97=-6x-3x-7 | | 50q-43=50q-81 | | -0.5x=1.7 | | 13=s+7 | | 46+m1=180 | | -6x+2=2x+98 | | 3x-x=1.16 | | 45+6x+1=4x-6 | | -1+6x=7x-1 | | 2x+4+4+2x-9+x=180 | | 2w^2-15w+13=0 | | X-2=-4x-37 | | 4(2x+1)=6(3x-2) | | x+35=2x+16 |