If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+17x-184=0
We add all the numbers together, and all the variables
x^2+17x-184=0
a = 1; b = 17; c = -184;
Δ = b2-4ac
Δ = 172-4·1·(-184)
Δ = 1025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1025}=\sqrt{25*41}=\sqrt{25}*\sqrt{41}=5\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-5\sqrt{41}}{2*1}=\frac{-17-5\sqrt{41}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+5\sqrt{41}}{2*1}=\frac{-17+5\sqrt{41}}{2} $
| 4x+2x=82 | | 3+9r=+10r | | 3(4z+2)=5(3z+3) | | 4/5y-3y=-3 | | G(9)=5x+4 | | 8x+12=-x-5 | | 5=46-3x | | 11n-9n=16 | | 8(6w+2)=4(w+4) | | 10x+(4x+12)=180 | | 6m-11=49 | | x^2+21x+396=0 | | 1.039=10y | | 5(x-6)=7x-8 | | 8x+11=x-3 | | X²+35x=0 | | -5n-4=-n+20 | | 5(x=7x-8-6)+4 | | -8j=-8-10j | | 3y−2=7 | | 0x+1x=2x+3x | | -91=7(n-7) | | x+¼=5/4 | | 12d-6d=18 | | 7/2(x+12)=14 | | (-4)+(-3)=(-x)+3 | | (14x-65)=89 | | 5x+290=360 | | -5.4/x=1.8 | | 8/3-m/7=8/21 | | 5a−a=16 | | x+1,8=3,2 |