If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+18x+77=0
We add all the numbers together, and all the variables
x^2+18x+77=0
a = 1; b = 18; c = +77;
Δ = b2-4ac
Δ = 182-4·1·77
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-4}{2*1}=\frac{-22}{2} =-11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+4}{2*1}=\frac{-14}{2} =-7 $
| 2x-5(x-3)=-8+4x-5 | | 5=x+3/2x-5 | | 2x-6=2(x-7)+10 | | 3x+70=5x-15=51-x | | 4s^2=225 | | 25x2-100=0 | | 19+p=22 | | 3x+2/2x+3=6x+7/4x+5 | | 6(2/x+4)=9 | | 14+7u=14 | | 12n-5=108 | | –5(2y+3)+5=40 | | 47=12-5m | | y/4+8=36 | | 2x-4(x-2)=-7+5x-34 | | (3x)2+7x-8=14 | | -6(x-6)=-5x-1 | | 2(-1)+3y=5 | | 125=9x+105 | | M=2/5x+1 | | 9.1x+23.96=-10.9x+22.92 | | -3(t-2)-(t+5)=5 | | 4x=14.4 | | 4+1/6n=-1 | | 0.4y+2=1.2y-6 | | 1/3x-2=1/7x+6 | | 3z^2+5z+1=0 | | 6.2x-1.3=17.3 | | 2d(3*6)=12 | | 234x-94-103x=788 | | 5-2y=7+4y | | 160=22+8(3p−4) |