If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+18x-5=0
We add all the numbers together, and all the variables
x^2+18x-5=0
a = 1; b = 18; c = -5;
Δ = b2-4ac
Δ = 182-4·1·(-5)
Δ = 344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{344}=\sqrt{4*86}=\sqrt{4}*\sqrt{86}=2\sqrt{86}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{86}}{2*1}=\frac{-18-2\sqrt{86}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{86}}{2*1}=\frac{-18+2\sqrt{86}}{2} $
| x2+18x-5=5 | | 6/2=2x+3/24 | | 31/7x=2 | | ((x+3)-x)/(x+3)(x+3)=0 | | .8x^2=200 | | 1,6(2x-1)=1,4x-2 | | s*4-17=75 | | .5(4x-8)+3x+6=90 | | 3-2x-9x=0 | | t/3-5=11 | | 2x+10=3x+60 | | X+21=42+x-45 | | 9-4(2n-1)=45 | | r-2-r/10=3/5 | | a/3+3=10 | | 3(y-8)=33 | | 3x²+x+4=3x²+10-2x | | 0=9x^2-137x+470 | | 9y+5y^2=18 | | -3(2x-3=-6x+9 | | 14=-3x+26 | | 6x|3-7|=24x | | 5c-6=5-3c | | 3z-2=24 | | -29-4x=2x+37 | | V(d)=101.5d | | -(x+9)=2(3x-8) | | (2t+2)(t-6)=(t-2)(t-2) | | -26-3x=39+2x | | 4/5y=120 | | 3/10=4x-1/10+2x | | x+7/10=7/5+x-9/6 |