x2+1=x+32

Simple and best practice solution for x2+1=x+32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2+1=x+32 equation:



x2+1=x+32
We move all terms to the left:
x2+1-(x+32)=0
We add all the numbers together, and all the variables
x^2-(x+32)+1=0
We get rid of parentheses
x^2-x-32+1=0
We add all the numbers together, and all the variables
x^2-1x-31=0
a = 1; b = -1; c = -31;
Δ = b2-4ac
Δ = -12-4·1·(-31)
Δ = 125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{125}=\sqrt{25*5}=\sqrt{25}*\sqrt{5}=5\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-5\sqrt{5}}{2*1}=\frac{1-5\sqrt{5}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+5\sqrt{5}}{2*1}=\frac{1+5\sqrt{5}}{2} $

See similar equations:

| (2t-5)(7t-6)=0 | | (e-9)(e+4)=0 | | 3x+10=2x+29 | | 4x-22=3x+5 | | (x+10)(3x-1)=0 | | 25^x-10=3,5^x | | (e-9)=0 | | 3x-10*10=-114 | | 9-x*9=-63 | | 6x(3x+5)=36 | | (7x-2)(7x+2)=0 | | (7a-2)(7a+2)=0 | | 5-3x+1=4x-1 | | (7m-2)(7m-2)=0 | | x+x(3)x-5=85 | | 2t=3*8 | | 3x+1x–9=x | | 3*2+1d=28 | | 6(d+5)=30 | | y2+2y-840=0 | | 2*3b-2*9=2*3+1*3b | | 2(x-1)=5(x+4) | | (Y-6)(y+3)=0 | | 9z+2=29 | | 6x-20=10x+8 | | x-3=2(x-4)-1 | | 0.75c=21 | | 119=5•x+34 | | 5x^2=4137 | | (5x)x=4137 | | 7u-63=7 | | X=6*(0.5*x) |

Equations solver categories