If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+1x=51x
We move all terms to the left:
x2+1x-(51x)=0
We add all the numbers together, and all the variables
x^2-50x=0
a = 1; b = -50; c = 0;
Δ = b2-4ac
Δ = -502-4·1·0
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-50}{2*1}=\frac{0}{2} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+50}{2*1}=\frac{100}{2} =50 $
| x+0.1x=1620 | | -80x+7280=180x-3640 | | 5x+13=2×+1 | | (y+16)=(3(22)-15) | | (100/25)x=8 | | 100/25x=8 | | 3x5=2x-3 | | S=t³-3t²+2 | | (4.8)/(x)=(6)/(8.4) | | -x-5=21 | | (9x+2)=(3x-14) | | (y-18)=(5(24)+20) | | (y-18)=(6(24)-4) | | (5x+20)=(6x-4) | | -9.8=16/t^2 | | 17=b^2 | | 62+1=2(3z-1) | | 15n+1=1+4n | | 100-(100*0.5/100)x=0 | | 100-(100*0.5/100)x=10 | | 8y-6=-4y+2 | | 3.2x+0.4=22.8 | | 8y-3=-4y+1 | | -3=-6y+1 | | 4y=-2y+4 | | (4x+6)=(5x-1) | | 3(.75+2p)=11.25 | | 100-(100*0.5/100)x=50 | | -13.5-5x=12 | | 4y-3=-2y+1 | | 20=2(y-2)-8y | | 3(y+2)=4y+6 |