If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+20x=33
We move all terms to the left:
x2+20x-(33)=0
We add all the numbers together, and all the variables
x^2+20x-33=0
a = 1; b = 20; c = -33;
Δ = b2-4ac
Δ = 202-4·1·(-33)
Δ = 532
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{532}=\sqrt{4*133}=\sqrt{4}*\sqrt{133}=2\sqrt{133}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{133}}{2*1}=\frac{-20-2\sqrt{133}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{133}}{2*1}=\frac{-20+2\sqrt{133}}{2} $
| 415b=310b | | (x+5)^2=x^2+49 | | 5(2x+1)+3(2x+4)=4(4x+7) | | 5x-7(-2x-3)=-74 | | 4=5x-7x=2x+1 | | 9x–54=6x+21 | | 2(3m-11)= | | 3x,3x,2x=180 | | u+78/7=(-2) | | 4x+3(3x-11)=-176 | | 5(y+4)=4(y+6) | | 3+5x-7x=2x+1 | | r/(-3)+(-2)=(-5) | | -2p+(-1)=(-7) | | 4+15b=310b | | -4x+3(7x-7)=132 | | -23=k/3+(-16) | | -12+2x+2x=-8+x+12 | | x=14-49/x | | x=14/49/x | | -4+(-g)=(-7) | | -7+5x=x+2x-20 | | 16x+10+15x+30+20x-16=81 | | k+14/10=(-1) | | ∠A=6x−48∠B=4x+38∘ | | 5x-12+3x=2x+14x+12 | | b-17/10=6 | | k/7-13=(-9) | | 70=7(s+3) | | 2x+20=58+38 | | h/2+4=5 | | 7=3j-(-1) |