If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+26x-32=0
We add all the numbers together, and all the variables
x^2+26x-32=0
a = 1; b = 26; c = -32;
Δ = b2-4ac
Δ = 262-4·1·(-32)
Δ = 804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{804}=\sqrt{4*201}=\sqrt{4}*\sqrt{201}=2\sqrt{201}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{201}}{2*1}=\frac{-26-2\sqrt{201}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{201}}{2*1}=\frac{-26+2\sqrt{201}}{2} $
| 8z-7=9z-4 | | 1/4+b/9=17 | | 7(x-4)=x+5 | | 3x+1-x=4+x+9 | | k2+6k+1=8 | | -5x-9=31 | | 4c+9=2c+15 | | 5x^2+240=0 | | 0.5t+49.95=90.20 | | 0.033=0.07x | | 6x+27=3x-36 | | 2/6-7n/12=1/6 | | 3/10y-3=y/5+5 | | -2r+3r=4(4r-5)+7(r+6) | | x0.033=0.07 | | 7^-8n=77 | | (3x+)x=24 | | 16/3=4u | | -3x+4x=-408+x | | -2(-7y+8)-2y=2(y-2)-6 | | 3(2a)^2=0 | | y+4(-1)=11 | | 0.1t+29.95=0.5t+49.95 | | 10.3=0.6/y | | 5(2x-39)=6x+14 | | 7x+1x-5=2(4x+9) | | -6(9x+5)=-3x+4x=-408+x | | r2+9r+18=0 | | -6(9x+5)=-3x+4x | | 7x=4x=18 | | C=8/3(k-86) | | (g+15)^2=g^2+3g+2.25 |