x2+2=10x+140

Simple and best practice solution for x2+2=10x+140 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2+2=10x+140 equation:



x2+2=10x+140
We move all terms to the left:
x2+2-(10x+140)=0
We add all the numbers together, and all the variables
x^2-(10x+140)+2=0
We get rid of parentheses
x^2-10x-140+2=0
We add all the numbers together, and all the variables
x^2-10x-138=0
a = 1; b = -10; c = -138;
Δ = b2-4ac
Δ = -102-4·1·(-138)
Δ = 652
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{652}=\sqrt{4*163}=\sqrt{4}*\sqrt{163}=2\sqrt{163}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{163}}{2*1}=\frac{10-2\sqrt{163}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{163}}{2*1}=\frac{10+2\sqrt{163}}{2} $

See similar equations:

| 8-42/3=n | | 11c+10=32 | | 19=2x+2 | | 6(y+9)+y=3(y+2)-4 | | -8(3x+7)=6 | | 6(7x+5)+5=371 | | 7z+10=4z+37 | | 8(x-1)-(x-2)=6(x+3) | | 22=g/5−(-19) | | 8d+8=9d+3 | | 7z+11=2z+36 | | 10z-5=65 | | 17-3w=11 | | -4x+3=—1 | | |4x+2|=12 | | k/9-2=5 | | 9(3x-2)=18(x+4) | | 8(3x+9)=0 | | 5x+13=7x-9 | | ​6​h​−1=−3 | | 8(4x+9)=32x+9 | | 8+12x=-68 | | 10(6x+9)=15(3x+18) | | 2x=(90)x=45 | | m^2-14=30 | | 6n=30+3(1–4) | | 7x-2-5x=8x+x | | 5x^24x=57 | | 35m-2-42m=-13 | | 2x-4+2x=-36 | | 3x-5•(-2x-8)=-25 | | (2x-20)+(x-20)+40=180 |

Equations solver categories