If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+2=35
We move all terms to the left:
x2+2-(35)=0
We add all the numbers together, and all the variables
x^2-33=0
a = 1; b = 0; c = -33;
Δ = b2-4ac
Δ = 02-4·1·(-33)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{33}}{2*1}=\frac{0-2\sqrt{33}}{2} =-\frac{2\sqrt{33}}{2} =-\sqrt{33} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{33}}{2*1}=\frac{0+2\sqrt{33}}{2} =\frac{2\sqrt{33}}{2} =\sqrt{33} $
| 10^x+6=55 | | 3+1/3=8+2/3x | | -6x+(-30)=18 | | 2/3n-156=313/24 | | -5k-11=-86 | | 9+5-8r=-2-6r | | 17u=40+9u | | (v)-1=4/3 | | 18t-15t=9 | | 150*x=6 | | 5x2+X=35 | | 5x2+2X=35 | | -7v=-9v+8 | | B=(6/13)y | | 6n-(5n-1)=4 | | 11-3b/5=1/3b | | 2x+2x=2=4x=2 | | (x-4/10)=(3/5)(-x-5/15) | | (13x+3)=(3x+21) | | B=(6÷13)y | | -7+7j=6j | | x2+1X=35 | | 4(2r-1)=–2(3r+16) | | x–1.4=-6.3 | | -10-4s=-6s+10 | | (42-6)*10=x | | 120+0.30x=60+0.60x | | 42-6=10+10x | | 8=(3/4a+12-a+4 | | x2-1X=35 | | 8v=7v-4 | | 50v+5=2 |