If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+2x=143
We move all terms to the left:
x2+2x-(143)=0
We add all the numbers together, and all the variables
x^2+2x-143=0
a = 1; b = 2; c = -143;
Δ = b2-4ac
Δ = 22-4·1·(-143)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-24}{2*1}=\frac{-26}{2} =-13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+24}{2*1}=\frac{22}{2} =11 $
| -3(v+5)=3 | | 20j+4j-16=-8 | | 2(t+-5)=6 | | x÷6=16 | | 2c+6c=8 | | 2(j-5)=2 | | 75=-16t^2+80t+4 | | g(5)=-4(5)+5 | | 9x-23=2x-2 | | -2(d-13)=-10 | | s/9+14=17 | | x^2=-88 | | (x+10)^2=12 | | 3z-13.7=-0.2 | | h/2+17=21 | | 7x-21=4x+33 | | 23x^2+92=0 | | 22=c/3+17 | | -7+8d=-71 | | v/2+9=13 | | 567x^2-28=0 | | b/3-1=2 | | 15+3x-1=5x+8 | | 5x+4x=9+5x | | 2x+5x=5x+15 | | 4x-3x=18-3x | | 25-7x=8x-7x | | -8y=-50 | | (5x)+2x+3=31 | | 5x+20=2x+35 | | 8k+1=6k+7 | | X=2x-48 |