If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+2x=195
We move all terms to the left:
x2+2x-(195)=0
We add all the numbers together, and all the variables
x^2+2x-195=0
a = 1; b = 2; c = -195;
Δ = b2-4ac
Δ = 22-4·1·(-195)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-28}{2*1}=\frac{-30}{2} =-15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+28}{2*1}=\frac{26}{2} =13 $
| 5x-4=x+14| | | 3m^2-8=-5m | | 2x-8=4x-19 | | 64+0.6x=x | | -21x-5(5-6x)=6(x-4)-13 | | 5x+4=-(x-14) | | u-3.4=8.61 | | 5x+6x-17=85-6x | | 32+(4c−6c)+(2+6c)c=5 | | -7x+37=107 | | 4x^2-27x=-18 | | 5b=-13 | | 4z+9=25 | | x+(x-78)=180 | | 4x+10-3x=10 | | 100=-+5x | | q+8=-4 | | s(1)=-16(1)^2+100(1)= | | -59-9x=103 | | 3y-52+2y+37=180 | | -5e+8=-2 | | 1+3x=x+19 | | 1/4x+1/5=3 | | 13k-12=12+11k | | 2x+24+11=x+25 | | 41+9x=-22 | | z/3=-3 | | 3y-52+2y+27=180 | | 3y-29=-5(y+9) | | -15x-20=-13+80 | | 10x-5+5x+5=180 | | 65.8-7.1x=2.9x+26.8 |