If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+361=484
We move all terms to the left:
x2+361-(484)=0
We add all the numbers together, and all the variables
x^2-123=0
a = 1; b = 0; c = -123;
Δ = b2-4ac
Δ = 02-4·1·(-123)
Δ = 492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{492}=\sqrt{4*123}=\sqrt{4}*\sqrt{123}=2\sqrt{123}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{123}}{2*1}=\frac{0-2\sqrt{123}}{2} =-\frac{2\sqrt{123}}{2} =-\sqrt{123} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{123}}{2*1}=\frac{0+2\sqrt{123}}{2} =\frac{2\sqrt{123}}{2} =\sqrt{123} $
| 21+3c=-4+28 | | x*x+361=484 | | 3k×=2k | | 17.7h+5.32=11.27+18.2h | | 5x-19=3x+3 | | 9x-1/2=22 | | -15-16p=-15p | | 5.5x+8=2.5x-13 | | 2(x-8)=x-16 | | -1-3u=-19-2u | | 24=–6q+–18 | | 243=9p | | 3j-7=11j-6j+17 | | 2x+6-3x=-2 | | x+(x-1)=126 | | 32/48=x/4 | | 2-5(3x+5)=12 | | 2c+10-1=-9-c | | 5r-7=2r+3r | | y=–4 | | 14x=9x-21 | | 3(x-8)=- | | -2-9y=-10y-9 | | 180=11x-24 | | 5m+5=36 | | -9n=-9-10n | | x=11x-24 | | -10-7k=10-10k+10 | | 10/x+2=14/2x+1 | | (2x+3)+63=180 | | 2x+(14+2x)=100 | | 10/x+2=10/60 |