If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+3=39
We move all terms to the left:
x2+3-(39)=0
We add all the numbers together, and all the variables
x^2-36=0
a = 1; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·1·(-36)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*1}=\frac{-12}{2} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*1}=\frac{12}{2} =6 $
| 1+6v+4=47v= | | 55=x^2 | | 6(2x-3)=-14 | | 5r=2r-14 | | (-5/4)+g=3/16 | | 102-4xx=17 | | 7x+21+2x=39 | | (b/7)-4=-5 | | 5x-50+2x-30+x+20=180 | | 10q-7q=3 | | 1=10−3z | | 8t-24=6 | | 11x-4x+6=12x+1 | | 5x=9=39 | | -8-5x-2=-12 | | -12j=-16-10j | | −8d=−56 | | 2x-35=9x-49 | | p=13=37 | | -18q=14-20q | | 3x+18+2x-11=4x+5 | | 7x+5x-8=-4 | | 9x2-16x-4=0 | | 5+1/7x=-2637 | | 7x+9x-6=4(4x+5) | | 5+1/7x=-2897 | | 20c-14c=18 | | 24+5x=11x | | (6)(1/3)(4a+1)=(6)(1/2)(a) | | b/2=35 | | x^2-11+7=0 | | 6q+-16q=20 |