If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+3x+5=3
We move all terms to the left:
x2+3x+5-(3)=0
We add all the numbers together, and all the variables
x^2+3x+2=0
a = 1; b = 3; c = +2;
Δ = b2-4ac
Δ = 32-4·1·2
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-1}{2*1}=\frac{-4}{2} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+1}{2*1}=\frac{-2}{2} =-1 $
| 6a-46=7a-85 | | -5.1=1.3+w/4 | | 4+9x5-2=31 | | 180=110+x+(1/3•x) | | 32=5n-13 | | b+10=8b-18 | | x-3x2=x+2x3 | | 2b=b+71 | | 3^x=1/17 | | 3t=t+18 | | 180=110+x+1/3x | | ×/y=45 | | 9(p-4)=-189(p−4)=−18 | | 3x-2=x+2x3 | | 3b=b+52 | | x^2-200x-800=0 | | B^-11b=-10 | | 9(n+2)=81 | | 20m^-40m=0 | | j/4-1=4 | | 11=g/3+7 | | 180=x+((180-5x)+(180-5x)) | | 55.009=u | | 2n^2-7-9=0 | | z+16/8=3 | | 15=4s-21 | | x+9=3x–3 | | 6+3x=6x+8 | | -m-3=5m+1 | | 3(n+45)=21 | | 63=9+9n | | |2-5x|=|3x+1| |