If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+3x-18=0
We add all the numbers together, and all the variables
x^2+3x-18=0
a = 1; b = 3; c = -18;
Δ = b2-4ac
Δ = 32-4·1·(-18)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-9}{2*1}=\frac{-12}{2} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+9}{2*1}=\frac{6}{2} =3 $
| -5/8w=40 | | 40p2-90=0 | | 2.5x+21=2x | | 6x+1=3(2x–4) | | 7^2+3x+4=0 | | 3x+1/x-2=0 | | X^2+3x+6=1 | | 1/3x-7=0 | | 7^2-3x+4=0 | | 0.4(3x+12)=1.2(x+4) | | 7^2-3x-4=0 | | a/5+3=8 | | -2x×x=0 | | -13w+15w+7=8w+43 | | .5x-3(x+2)=2x-15 | | x÷7=42 | | X2+11x+18=0 | | 3(4x+7)=21x+3-9x+18 | | 24-x/3=x-5 | | x2=1.44 | | 5(x+1)=-2x+17 | | 3(x+2)+5=3x+6 | | 48-2p=-12+p | | X+2/5=-x-3/9 | | X2+11x+24=0 | | 7-25=3a | | 4-2(w-1)=w-4(w-2) | | 7y+5=-17 | | -8x+6x=5x+11-4x | | 3w=w×3 | | -5x+3+6x=14-32 | | (2x-1)^2/5-(2x-1)^1/5=6 |