If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+3x-89=0
We add all the numbers together, and all the variables
x^2+3x-89=0
a = 1; b = 3; c = -89;
Δ = b2-4ac
Δ = 32-4·1·(-89)
Δ = 365
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{365}}{2*1}=\frac{-3-\sqrt{365}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{365}}{2*1}=\frac{-3+\sqrt{365}}{2} $
| 7a/3+41−a/3=−52 | | 3^(y-7)=11 | | 3^y-7=11 | | 35=9x-1 | | |5x-3|-7=0 | | 3b+12/7=5/14 | | x+120=200 | | 37=-4.6-3.2n | | 3+5a/7=13 | | 3+5a7=13 | | 3x-10+2x+10=45 | | a/11-5=-6 | | 5-5b/3=10 | | (4x/3x)+5=4/5 | | 2x^2+6x^2=24 | | 2n-1=3n-6 | | x-2/2x+1+3=x/x-2 | | 4x+13=3x+16 | | 8c-2=7c | | -4q-20q+q+9q+15q+-8=-15 | | (x^2-1)/(x^2-4)=0 | | 16j+-14j+19j-6j=15 | | 41/2=x | | 0=25x-3200 | | 11z-8z-z-z-1=13 | | 2v+2v+2v+3v-7v-1=19 | | 19a+2a+a-19a-1=20 | | 4m-3m+5=13 | | 10/3=x+6/6 | | 4p-2p+3p-5p+4p-4=20 | | 17q+4q+q-19q+2=17 | | 13h-12h+2h-2h+2=14 |