If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+40x-8000=0
We add all the numbers together, and all the variables
x^2+40x-8000=0
a = 1; b = 40; c = -8000;
Δ = b2-4ac
Δ = 402-4·1·(-8000)
Δ = 33600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{33600}=\sqrt{1600*21}=\sqrt{1600}*\sqrt{21}=40\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40\sqrt{21}}{2*1}=\frac{-40-40\sqrt{21}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40\sqrt{21}}{2*1}=\frac{-40+40\sqrt{21}}{2} $
| 12=2x+4/3-2/3x | | -4(x-3)+4=2(5x-6) | | x2+40x-8000=9 | | -2x+7+3x=3x-9 | | 3x+9=4(2x+3) | | 12-19x=-3(x+10) | | 3a+10=0 | | -2+x=-5(x+1) | | 3-(x-2)=2x+7 | | -42-4c=-2c | | 125=5+6(3x+2) | | 11+2x=90 | | 6=v/4-9 | | 5/2x12=18 | | 2(x-3)-17=3(2x-1) | | 53050-75x+200x=65000-200x | | 1–(2x+4)=-4x+5 | | (3n+3)+(2n-1)=44 | | -75=(1)/(2)y | | 2b=38 | | 14x+8=5x+5 | | 6(3+6)-4d=24 | | 45/25=x/16 | | -m/15=18* | | 8+-3(k+2)=2+-3k | | –2c−6=9c+9−8c | | 5x=(4x+6)+(3x-2) | | (9x-4)/5=(7x+2)/4 | | 16x+2-17x=5x-8 | | 170=(45+1x)+(45+4x) | | 172-12=14x-2 | | F(3)=-5x+1 |