If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+40x=0
We add all the numbers together, and all the variables
x^2+40x=0
a = 1; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·1·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*1}=\frac{-80}{2} =-40 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*1}=\frac{0}{2} =0 $
| r-r+2r=4 | | k-70=-42 | | 7h-h=12 | | 4x+240=300 | | (5x-6)-3=12-(2x-7) | | 17b-16b=18 | | 7x+2=-7x-2 | | 9h-8h=13 | | 16c−14c=10 | | –2a+7=a–8 | | 5^2x-2=10 | | 16k-12k=8 | | 3y–20=8y | | 72÷8=j | | n-3/5=18/20 | | 2b-b=5 | | j=72÷8 | | -8d-25d+30d=9 | | 9=r/6 | | 16h+4h+10h+h-27h=32 | | -17h+14h-44h+12h=-35 | | t-72=16 | | 4t-3t=t | | 12d+2d-12d-1=19 | | 5d-d=12 | | 4t−3t=8 | | 14p-8p-4p+6=40 | | x=8x-45 | | 7/2(x)+1/2(x)=4(x)+18/2+9/2(x) | | 16z+z-15z+2z=12 | | 25^x-7=125^-2x=10 | | 12d+2d−12d−1=19 |