x2+4=17

Simple and best practice solution for x2+4=17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2+4=17 equation:



x2+4=17
We move all terms to the left:
x2+4-(17)=0
We add all the numbers together, and all the variables
x^2-13=0
a = 1; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·1·(-13)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{13}}{2*1}=\frac{0-2\sqrt{13}}{2} =-\frac{2\sqrt{13}}{2} =-\sqrt{13} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{13}}{2*1}=\frac{0+2\sqrt{13}}{2} =\frac{2\sqrt{13}}{2} =\sqrt{13} $

See similar equations:

| 2d-7=-75 | | -25=m=23 | | 2=29-2d | | -2(n=1)=6 | | 2j−5=3 | | u-9+3(3u+1)=-4(u+1) | | 288/d=8 | | x^2+6x+4=−2x+4 | | 14x+8=3x+20+5x | | –9−6h=–7h | | 3x+4x-6x=7x+6x | | 1.1x=-22.6 | | -3.5x=-15 | | x^2+5x=0. | | 10=6n/5+2 | | (e+)*6=36 | | -6=2-x2 | | 0.5(7d+4)=7-5d | | 8x^2-2=-121 | | x4+8=16 | | 8x^2-2=-122 | | -7v+24=-2(v+8) | | 5(y-1)=5y+1-2(-5y-4) | | (1/7)(x+3/4)=1/8 | | 10x-12-3x+2=7x-14 | | 8x^2–2=-121 | | 0,6x-0,4=0,35x+0,6 | | 5x−(x+3)=1/3(9x+18)−5 | | 3x+2(2x-5)=2x+30 | | 6x+9=9+3x | | 2(x+6)=(6+1/3x | | 12d-7d=36+14 |

Equations solver categories