If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+4x-4=0
We add all the numbers together, and all the variables
x^2+4x-4=0
a = 1; b = 4; c = -4;
Δ = b2-4ac
Δ = 42-4·1·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{2}}{2*1}=\frac{-4-4\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{2}}{2*1}=\frac{-4+4\sqrt{2}}{2} $
| x+(19x+20)=180 | | 2(1-x)-3=3(2x+1)+2 | | 2x2-7x-4=0 | | -6x(2)=3×(-6)-3 | | v+1.97=8.57 | | 9x2-6x+1=0 | | -6x-3x=-6-3-2 | | -2×(3y-1)=3×(y-2)-1 | | 5x-0=-4 | | -2×(3x-1)=3×(x-2)-1 | | -2(x+5=-2(x-2)+5 | | -8(10-x)-3=3(2x+1)+2 | | 3^(x)+3^(2x+1)=252 | | 6(x-1)=9(2-x) | | x3-60x2+1200x-8000=0 | | p2+12p=-4 | | -5=2(x-4) | | 3x-12-2=2x-19 | | 22=2u-16 | | 2.5x-4=4 | | 4/x+1=3/7 | | x2-6x+21=0 | | -2(x-4)=-1 | | 6x3•-3=15 | | 3×(x-4)-2=2x-19 | | 4x2-12x-63=0 | | 3×(x-4)-2=2x+10 | | 42/h=6 | | x2+6x-23=0 | | 4+x/5=6 | | 3x(4)=-2x | | 11/3=8x |