If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+4x=196
We move all terms to the left:
x2+4x-(196)=0
We add all the numbers together, and all the variables
x^2+4x-196=0
a = 1; b = 4; c = -196;
Δ = b2-4ac
Δ = 42-4·1·(-196)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-20\sqrt{2}}{2*1}=\frac{-4-20\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+20\sqrt{2}}{2*1}=\frac{-4+20\sqrt{2}}{2} $
| 4y-4+2(2y+5)=-2(y+5) | | 2m^2+17m=0 | | 1/2(y+2)=y/3 | | 4=s÷36 | | 17x=28 | | 8=-2x6-3x | | 2 x ^2−4 x−1 = 0 | | 2|3x-1|=10 | | 7+3n=1+2n | | 10=7−m | | -9x2+18x=16 | | 7e+1=36 | | 2/3q=423q=4 | | (5x+2)=62 | | 9x^2+18x+826=0 | | 9x^2-36x-7=0 | | 20-5y=2y*5 | | x^2+13x=36=0 | | 4w+2=30 | | 1/4x+-8=12 | | 4(x-3)=-6(2x+1) | | 3+1/5b=19 | | 24=1.25x-0.5 | | 2x(3x+1)=3x(2x+1) | | 5x-2=45x+22 | | 12+8y=0 | | -35=-3(v-2)-4(3-8v) | | 3(2x15)=2(3x-2) | | 2x+1=5x-4-3x | | 4=36-2x | | 5k+12=-3 | | 16x3−6x2−56x+21=0 |