If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+4x=45
We move all terms to the left:
x2+4x-(45)=0
We add all the numbers together, and all the variables
x^2+4x-45=0
a = 1; b = 4; c = -45;
Δ = b2-4ac
Δ = 42-4·1·(-45)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-14}{2*1}=\frac{-18}{2} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+14}{2*1}=\frac{10}{2} =5 $
| 4z/10+6=5 | | 7x+4=9x+24 | | 2x+3x4=44 | | n-9=n+.5 | | 2x2+5x+10=0 | | 12y–2/3=–1. | | 4/7x-1/14x=x-15/2 | | 2x+3(x+9)=2(x+3) | | 2{4w-1}=3{4w=2} | | -24+-1/8p=3/8p | | x/10+4=3 | | -4(3n-5)+4=-16-2n | | x*x-4=21 | | 18v+3=4 | | t/3+5=7 | | -66=88-11b | | 2/3(x+9)=14 | | z/10+6=3 | | 7a+3a=2a-4 | | 29(a+7)-7=9 | | -5=x÷2 | | -3+7x=42-6x | | n2*7=-196 | | 625+10f=20 | | (6x-2)+20=90 | | n-6=7n-3 | | x3=36 | | 4/7x+1/3x=38 | | x2=-11x-10 | | 6z^2+9z+3=0 | | z2–z–6=0 | | 7n+2=-196 |