If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+56x+96=0
We add all the numbers together, and all the variables
x^2+56x+96=0
a = 1; b = 56; c = +96;
Δ = b2-4ac
Δ = 562-4·1·96
Δ = 2752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2752}=\sqrt{64*43}=\sqrt{64}*\sqrt{43}=8\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-8\sqrt{43}}{2*1}=\frac{-56-8\sqrt{43}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+8\sqrt{43}}{2*1}=\frac{-56+8\sqrt{43}}{2} $
| 15-7n=-62 | | (–7m−8)(–6m+1)=0 | | x÷2.5=0.5 | | x3+13x2–30x=0 | | 3(x+12)=2(x-14) | | 10÷16=n | | $$4z+14=22 | | 3x+5+4x=25 | | 2(5t-6)=17t+8 | | A=(27-6b)/9 | | 11=9-2(2x-7) | | 9+4(y-6)=12 | | 4-(x-6)=14 | | f(-1.5)=1/0.5 | | 3z–2=7z-14 | | 4x2+56x+96=0 | | –4s=–2s−8 | | 2x-3=12=3x-2=14 | | 9^(x)=((1)/(3))^(x+3) | | 4q-23=2q+17 | | 3n-9=2.5n+15 | | 2k-15=k+55 | | 5x×3=12 | | 2a+27=15 | | f+10=2f-90 | | 5a-3=3a+23 | | -4a+36=20 | | 9^(x)=(1/3)^(x+3) | | -4(4t^2-8t+3)=0 | | 15s+1+4s-1+6s+5=180 | | y/7=4/14 | | 24-x/5=10 |