If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+5x-14=0
We add all the numbers together, and all the variables
x^2+5x-14=0
a = 1; b = 5; c = -14;
Δ = b2-4ac
Δ = 52-4·1·(-14)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-9}{2*1}=\frac{-14}{2} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+9}{2*1}=\frac{4}{2} =2 $
| t^2-9t+39=0 | | x+2x+x+5=100 | | 0.5x+x-100=x+5 | | 64=x+x+x+2.5x+2.5x | | 2*r(4)=r(8) | | w-8=3w | | -13+13x+12x^2=0 | | 12-4*5=5x-4-3x+10 | | 4(2x-5(x-3)=6 | | -10^2-39x-35=0 | | 4z-8=3z+9 | | 4-4=5x-3x | | 1x+-5=5+-3x | | 7x+6-4=15 | | n²-65n+1000=0 | | 0.5x^2-6x+20=0 | | s(3)+s(7)=s(10) | | 15=7x+6-4 | | (3)+s(7)=s(10) | | x+3x+2x=50 | | (11a+3)−18a=−4 | | s(3)=76+207 | | (x+3)^2=5 | | 30a^2+17a-2=0 | | s(32)=76+2032 | | 8.5x+44.09=-11.5x+42.91 | | 132x+2=22 | | 1/3y+6=1/7y | | 4=1x4 | | 2p-9=5p+18 | | (1/3)y2+12=5×3 | | 3(6z-1)-2(z+3)=14(z+1) |