If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+5x-400=0
We add all the numbers together, and all the variables
x^2+5x-400=0
a = 1; b = 5; c = -400;
Δ = b2-4ac
Δ = 52-4·1·(-400)
Δ = 1625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1625}=\sqrt{25*65}=\sqrt{25}*\sqrt{65}=5\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{65}}{2*1}=\frac{-5-5\sqrt{65}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{65}}{2*1}=\frac{-5+5\sqrt{65}}{2} $
| 3=-(2x+1 | | (X*40)+(1.5x*5)=1211 | | 5j+13=38 | | 5d+25=70 | | 4s+19=47 | | 4d+30=58 | | 2(4x+1)=3(x+3)-2 | | 9p+24=87 | | 7s+19=68 | | (11.r)=165 | | 4x+11+7x+2=180 | | 3(3-y)+3y=9 | | -12-c=-9 | | 2.5(x+4)+1=38 | | 29+d=54.24.25.26 | | 5^(2x)=2(5)^x+1 | | 7^(2+a)=9^(2a) | | 7^2+a=9^2a | | Y=5x(2x)-3 | | 35x+10=-5 | | -360+8x^2-32x=0 | | -8x^2+32x+360=0 | | 5a+5=4a-2 | | 80+5.5n=180+4.5 | | 80+5.5n+4.5=180 | | 100x-331=30 | | 3x+12=31 | | 3(3n+10)+70+35=180 | | 3(3n+10)=70+35=180 | | 3(3n+10)70+35=180 | | 7x+3=85 | | x=130+75 |