If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+5x=55
We move all terms to the left:
x2+5x-(55)=0
We add all the numbers together, and all the variables
x^2+5x-55=0
a = 1; b = 5; c = -55;
Δ = b2-4ac
Δ = 52-4·1·(-55)
Δ = 245
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{245}=\sqrt{49*5}=\sqrt{49}*\sqrt{5}=7\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-7\sqrt{5}}{2*1}=\frac{-5-7\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+7\sqrt{5}}{2*1}=\frac{-5+7\sqrt{5}}{2} $
| 17x+4(5-x)=24x-3(x-4) | | x2+11x+12=5x+3 | | 5x+35=5()= | | 9x-7+7x-9=28-2x= | | 60=2x+50 | | Y^2+10y-9=0 | | 10y-9=0 | | 5^5x-1=20 | | x=900+100-97/36 | | x2+6x+5=2x+2 | | m2=-59+6m | | 28x^2+10x=0 | | x-0.7x=252 | | (P+3)/m=-1 | | x-0.8x=252 | | 900x+900=x | | 9x-7-7x-9=28-2x= | | 6x+15+10x+15+40=180 | | √()2x-5=3 | | (6x+15)+(10x+15)+40=180 | | Y=41x+288 | | 331/6=x+7 | | 3x2+4x-6=0 | | Y-4=1.3(x+0) | | 4(3p+2p)-12p^2=2(8p+6) | | 2.2^(x-5)=9.32 | | 18/20x+13=21 | | 9x÷8(2-x)=5 | | 2.2^x-5=9.32 | | 9^3x-7=81^x+2 | | 9x^2+9=585 | | (x^2+2)/3*2=15 |