x2+6x+-567=0

Simple and best practice solution for x2+6x+-567=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2+6x+-567=0 equation:



x2+6x+-567=0
We add all the numbers together, and all the variables
x^2+6x=0
a = 1; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·1·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*1}=\frac{-12}{2} =-6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*1}=\frac{0}{2} =0 $

See similar equations:

| 2(x-1)(1+x)+(2-x)³+12x=2(2x-1)(1+2x)-x³+8 | | x-8=-28 | | 0=30+10y-16y | | 3(2x-1)+2x-7=3(x+1)-(-3x-1)+3x+2 | | 4000=4160*r*1 | | 4160=4000*r*1 | | 14g=16+6g | | 12r-(-18r)-(-10)=5 | | 108=(12,0+x)x4,5/2 | | 108=(12,0+x)x4,5 | | 5z(z+2)=0 | | 800=x+x0,7 | | 4x-7=19-6x | | x+x0,7=2x0,7 | | -9x+-5=95 | | 25y^2+35y-36=0 | | x+x+3+2(x+3=69 | | x+x+3+2x+3=69 | | 6y-1/y-3=2 | | 3x+7=10x+7 | | {20}{x}=4 | | (2+3x)+x=50 | | |-x+3|/5=4 | | 2-18x+63=6-12x+15 | | |-x+3|/5=-4 | | 2-18x+63=6–12x+15 | | 1/9-((2x-7)/2)=1/3-((4x-5)/6) | | 1/9-(2x-7)/2=1/3-(4x-5)/6 | | 8x+5+4x-17=180 | | 8x+5=4x-17 | | 15=-b-2b | | -6x2^0.1x=-100 |

Equations solver categories