If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+6x+8x=35
We move all terms to the left:
x2+6x+8x-(35)=0
We add all the numbers together, and all the variables
x^2+14x-35=0
a = 1; b = 14; c = -35;
Δ = b2-4ac
Δ = 142-4·1·(-35)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-4\sqrt{21}}{2*1}=\frac{-14-4\sqrt{21}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+4\sqrt{21}}{2*1}=\frac{-14+4\sqrt{21}}{2} $
| j/2+7=12 | | d-326=391 | | Y=0.05x+75 | | r+-14=6 | | 19y+6=-18=3y | | 84−12r=96 | | 9^3x=27^3x+1 | | m=3.45=12.8 | | 4x^2+5=67 | | 3×+1y=12 | | d+402=994 | | 8x-140=4x+20 | | c-71/4=5 | | 7x=2=3x=30 | | 4=a+17 | | 38+37+x=75 | | w(w-10)+40=0 | | 14+r=30 | | S=-16t^2+88t+4 | | z/24=11 | | 2x–5=–9 | | 3+6w=63 | | 12y-10y+3=17 | | 834=f=207 | | 8i+11=2i-25 | | 0.x25x+13=4(x-8) | | 19z+2z-20z=19 | | -4w=-256 | | 25x+18=13x+246 | | 8u+5u-10u=12 | | t÷3-3=12 | | 0.6=x-8 |