If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+6x-4=0
We add all the numbers together, and all the variables
x^2+6x-4=0
a = 1; b = 6; c = -4;
Δ = b2-4ac
Δ = 62-4·1·(-4)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{13}}{2*1}=\frac{-6-2\sqrt{13}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{13}}{2*1}=\frac{-6+2\sqrt{13}}{2} $
| x*1,2=228 | | X+2+12=8*x | | 16(3x-5)=10(4x-5) | | 7/2x-11/2=5 | | 8(4x+3)=-1+7x | | 7*x-7=35 | | 4k^2-6=8k | | 7(6x-4)=6x-28 | | 30=0.81t^2 | | 5(5x-2)=2(9x+3 | | 3x-27=5(2x+2)-2 | | x-2+1=8 | | 5x/6=10/3 | | -3x+2-x(-x+2)=2x²-2x-2 | | 45/(9x-3)=3 | | -8x+10=2(5–4x) | | 322/(5x+3)=14 | | 3x-(7-2x)=14-2x | | (2x+7)/9=11 | | 3x^2+34x-40=0 | | 8=3^x | | (3x+45)+(x+15)=180 | | -2a-6=0 | | 5(2x+2)-3=4x+37 | | 6=2(x+2)-8 | | 2(4x-3)=4x+14 | | 10(2x+2)=6(3x+8) | | -9=2(4x+5)-3 | | 5(x+2)=-3x-46 | | 4=4(3x-2) | | 12x-25=7x-50 | | -34=4(x-2)-6 |