If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+6x=39
We move all terms to the left:
x2+6x-(39)=0
We add all the numbers together, and all the variables
x^2+6x-39=0
a = 1; b = 6; c = -39;
Δ = b2-4ac
Δ = 62-4·1·(-39)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-8\sqrt{3}}{2*1}=\frac{-6-8\sqrt{3}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+8\sqrt{3}}{2*1}=\frac{-6+8\sqrt{3}}{2} $
| 3y-30=7 | | 30-6=14-8x | | 3n=9.5 | | 3s+3=48 | | Z+4=34z= | | 4(2x+3)=(2x-2)+2(3x-7) | | ((2x)^3)-((5x)^2)-23x=10 | | Y=-x^-4x+1 | | 3s+10=43 | | 6+2x=66 | | -12=d+4 | | 54=7c+5 | | 3+x+x+x+x=2 | | 3h=-75 | | y-40=147 | | 63=9(u–1) | | k+3=-9k= | | z+-45=92 | | 15x-300=10x+50 | | r+1/5=-7/5 | | 2x^3-5x^2-23x=10 | | 2x-17)+(x+32)=180 | | 8x-5=3×-5 | | x+x=150 | | 80=49x+2 | | 6-√4+3x=2 | | 6f+12=4f-10 | | g/11=2/5 | | 3x+19+9x-23=360 | | 6f+12=4f-8 | | 5v+–14v+5v=4 | | 8x+20+11x-31=189 |