If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+6x=72
We move all terms to the left:
x2+6x-(72)=0
We add all the numbers together, and all the variables
x^2+6x-72=0
a = 1; b = 6; c = -72;
Δ = b2-4ac
Δ = 62-4·1·(-72)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-18}{2*1}=\frac{-24}{2} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+18}{2*1}=\frac{12}{2} =6 $
| 20×3=x3 | | 20×3=x×3 | | 20(3)=x(3) | | 3(2x+5)-(3x-4)=3x+11 | | .44=((16-x)/2) | | 4(a+3)=5(2+1) | | .44=16-x/2 | | 0.4z-3÷1.5z+9=7/5 | | 2s+1=2s+1 | | 3(m+2=m+10 | | d÷-10=4 | | d|-10=4 | | -9+n=-12 | | 63=7m | | -5b+13=8(-5b+6) | | x^2=13(13+39) | | 2x=x-26 | | 2a/4-7/4=-1/3 | | 7k+7-6=8k+1 | | r+7.8=8r+5 | | y-8y+7y=0 | | 9^-x-10=14^-3x | | 3x^2+12x-152=0 | | -5x-3x+-17x+14x=-15 | | 19m-6m+m+6=-20 | | 6q-3Q=-18 | | 6q—3q=-18 | | 18q+-12q+6q-8q+-20=0 | | 19c-18c=12 | | 5(c+12)=21 | | 14a-9a-4a=11 | | 2x+0.54=2.9-2.16 |