x2+75=(2x)2

Simple and best practice solution for x2+75=(2x)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2+75=(2x)2 equation:



x2+75=(2x)2
We move all terms to the left:
x2+75-((2x)2)=0
determiningTheFunctionDomain x2-2x2+75=0
We add all the numbers together, and all the variables
-1x^2+75=0
a = -1; b = 0; c = +75;
Δ = b2-4ac
Δ = 02-4·(-1)·75
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*-1}=\frac{0-10\sqrt{3}}{-2} =-\frac{10\sqrt{3}}{-2} =-\frac{5\sqrt{3}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*-1}=\frac{0+10\sqrt{3}}{-2} =\frac{10\sqrt{3}}{-2} =\frac{5\sqrt{3}}{-1} $

See similar equations:

| 12+15+x=6 | | x^2-275-14=0 | | 5+0.5(14b-8)=-6 | | 7z-4z=21 | | w+3.375=1.16 | | 0=-2t^2+40t-72 | | -2.25=r-4/5 | | 3x3+-4x2+-4x=0 | | 16x-96=32 | | x+0.6x=12 | | -22d-15=8 | | 0.6x-5=0.1x=2 | | x/(1-x)=0.3 | | ?x10=43 | | 17=j-13 | | 8=-8(u-91) | | 156-12=12n | | (4x-3)^2+(4×+3)^2=26 | | (2)^k=(3k)(3) | | 6x-2=2x-20 | | 4x2-8x-1=0 | | w2+7w-3=0 | | 4x-22=-4(1-6x) | | 3/f=2 | | 2(7m)=28 | | -3n+4n=3n | | 3/2+b=11/4 | | z2+8z+1=0 | | 3^1/10s=61/5 | | 8x–12=4x+16 | | 8+x4=88 | | 9x-(-6)=24 |

Equations solver categories