x2+8x+16=(x+4)2

Simple and best practice solution for x2+8x+16=(x+4)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2+8x+16=(x+4)2 equation:



x2+8x+16=(x+4)2
We move all terms to the left:
x2+8x+16-((x+4)2)=0
We add all the numbers together, and all the variables
x^2+8x-((x+4)2)+16=0
We calculate terms in parentheses: -((x+4)2), so:
(x+4)2
We multiply parentheses
2x+8
Back to the equation:
-(2x+8)
We get rid of parentheses
x^2+8x-2x-8+16=0
We add all the numbers together, and all the variables
x^2+6x+8=0
a = 1; b = 6; c = +8;
Δ = b2-4ac
Δ = 62-4·1·8
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2}{2*1}=\frac{-8}{2} =-4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2}{2*1}=\frac{-4}{2} =-2 $

See similar equations:

| (2x+1)+(2x+3)+(2x+5)+(2x+7)+(2x+9)/5=71 | | (x)=-5x^2+3x+1 | | 9-2x/3=5 | | 3x-3^2-x=8 | | 297+x=1089 | | 27+x=54 | | 6x-3=2x=13 | | Y+(y+3)=11 | | 5*0-y=-5 | | 57,1=2,4*(1-a)+131*a | | 57,1=2,4*(1-x)+131*x | | y=1/2*0-2 | | 4x=6x-38 | | 4^x=46 | | X-4/3+2x-3/35=5x-32/9-x+9/28 | | 52-13q=0 | | 3x/2+12=20 | | 42x=-11x-212 | | 3x/2+8=20 | | m+m+46=90 | | 90=m(m+46) | | 5-3x/2=2 | | 12x-3x-5x=0 | | 10p+8=12p-5 | | 3.9t-9.6t=-25.3 | | y/5=-18 | | 5(2x-8)+15=-15. | | 2/3*t=8/9 | | 3*(-5x+3)=-14*(x+1) | | -2x+5+6x+1=-2x+6x+10 | | 7x-3-6x=5+22 | | 7x-3-6x=24+3 |

Equations solver categories