If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+8x-256=0
We add all the numbers together, and all the variables
x^2+8x-256=0
a = 1; b = 8; c = -256;
Δ = b2-4ac
Δ = 82-4·1·(-256)
Δ = 1088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1088}=\sqrt{64*17}=\sqrt{64}*\sqrt{17}=8\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{17}}{2*1}=\frac{-8-8\sqrt{17}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{17}}{2*1}=\frac{-8+8\sqrt{17}}{2} $
| 7(3x-5)-18x=15 | | x+5−3x=6 | | 8x-5=-2+3x | | 9y=2.7 | | w/6=25 | | 19+w=10 | | n^2+25n+100=0 | | 0x-11=10-6x | | 6x-7=-1-1x | | 3(10-4a)+2(7a-4=0 | | x^2+5x-10400=0 | | s=7;6^2 | | y–5=10 | | 2n*6n=0 | | 6n2*6n=0 | | x²+10x-450=0 | | a16=289 | | An=(n+n1 | | AN=(2n-7) | | 9u−6=30 | | 4x-8=9x-7=180 | | 2y-3=7/2 | | 5y-2=3(y+2) | | |2x-2|=20 | | 2(y-5)=7(y+4) | | K=2x2-7x | | 27x-40=-25x-25 | | 26=8x−6 | | 27x-40=-25-25 | | 8x−12=5x−3 | | 2x+3=28−3x | | 2x+3x+1=-2 |