If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+8x-5=0
We add all the numbers together, and all the variables
x^2+8x-5=0
a = 1; b = 8; c = -5;
Δ = b2-4ac
Δ = 82-4·1·(-5)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{21}}{2*1}=\frac{-8-2\sqrt{21}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{21}}{2*1}=\frac{-8+2\sqrt{21}}{2} $
| 10x-8/3-4x=6x+9 | | 7x+75=2x | | x/2+70=10 | | 7x+5-x+3=9x-15+3x+5 | | 6x-71=55 | | 2/5(x-3)+1=3 | | x2-6x+6=0 | | 9t-48-4t+16=6t-18-5t-19+5 | | x+19/30=5/6 | | 6x-71=65 | | -10x+10x-15-15=8 | | 0=-14+(m-10) | | -6z-4-3=-29 | | Y-7=6.y=5 | | 7=(11×2)+p | | x/2-34=6 | | 6x^2-17x+40=0 | | 5(x+3)9=3(x-2)+6 | | 22=-2h+6h | | x4−x2−6=0 | | Y-7=6y=5 | | 5(x+3)(9=3(x-2)+6 | | 19x+31=69 | | 4(y+1)-3(y-5)=3(y-1) | | 4x-11=3x-7 | | 72=3(x)+24 | | -7f+3+4f=-28 | | 10x^2-60x+50=0 | | 0.5x+6=1/4*x*x | | 2x-4+3x+2=48 | | 6x-5(x+3)=7 | | -4(2+x)=2 |