If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+9x+-92=0
We add all the numbers together, and all the variables
x^2+9x=0
a = 1; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·1·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*1}=\frac{-18}{2} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*1}=\frac{0}{2} =0 $
| w-(-4)=6 | | 0.6x−4=0.28x+4 | | -10.1-3.9z=19.3-2.4z | | 20y+20=16y-16 | | 3(6x+1)=-177 | | 7.3-x=9 | | 2/3+n=3/2n+1 | | 7(3)-x=9 | | 10(1.375)^(19t)=40 | | 6+12t=13t+11 | | 2.50-2.25x=9.25 | | -11k-9=-8k | | 2(4x-1.9)=2x-3.8 | | 5(2x+8)=80 | | 3/4+16=2-1/8n | | 19.6t=3.92+19.8t | | 10^x=7 | | 7x+6=21+2x | | (4x+4)+(3x+1)=180 | | f(0)=2(0^2)-8 | | -6x-4=-3x+8 | | -(x-8)=4x=2(x+4) | | (40+15+0.35x)=(35+0.45x) | | 3f=5+2f | | 4/9x=52 | | x-1x=13 | | -3x-2=-3x-2 | | 9y-9y=30 | | 200x-0.52=400x+0.54 | | 4a=78-a | | 380=(2x+3)x | | 2-10d=5-19-9d |