If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+x+-90=
We move all terms to the left:
x2+x+-90-()=0
We add all the numbers together, and all the variables
x^2+x=0
a = 1; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·1·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*1}=\frac{-2}{2} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*1}=\frac{0}{2} =0 $
| 100+2x+12=180 | | 4(3x+17)-11=281 | | 4x+96=90 | | 8(-6n-4)=-272 | | x/11=x/11-1 | | -3x=4=1 | | ^15k=15 | | 7n/6=5/3 | | 10=3(x-1)-(x-9) | | 12/100=2/x | | 2h+138=1,040 | | 138+2h=1,040 | | 138+2h=1.040 | | 4x-4=9x+17 | | -7(5-3n)=-140 | | 1/2x+2/3x+12=18 | | 23229=34x/1-(1+34)^-34 | | 7(d-5)=12=15 | | 36=4×r | | -3(1-7n)=123 | | Z+4-6=10-2z | | 4+-n=-15 | | 8m=172 | | 16^(-x+44)=128 | | 174=48n+18 | | 3(7k^2+5k-2)=0 | | 3(7k+5k-2)=0 | | 7x-5=212 | | 7(n+8)-n=86 | | 13x+50=9x+100 | | 8z=11 | | 5h−7=1+h |