x2+x2=729

Simple and best practice solution for x2+x2=729 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2+x2=729 equation:



x2+x2=729
We move all terms to the left:
x2+x2-(729)=0
We add all the numbers together, and all the variables
2x^2-729=0
a = 2; b = 0; c = -729;
Δ = b2-4ac
Δ = 02-4·2·(-729)
Δ = 5832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5832}=\sqrt{2916*2}=\sqrt{2916}*\sqrt{2}=54\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-54\sqrt{2}}{2*2}=\frac{0-54\sqrt{2}}{4} =-\frac{54\sqrt{2}}{4} =-\frac{27\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+54\sqrt{2}}{2*2}=\frac{0+54\sqrt{2}}{4} =\frac{54\sqrt{2}}{4} =\frac{27\sqrt{2}}{2} $

See similar equations:

| 10(n+2)=5(n+6) | | 3(n+5)=5n-5 | | 2(n-3)=n+4 | | 3(x+3)^2-81=0 | | 5w−3=–3w−3 | | 5-x^2-(5-x)^0.5=0 | | 5-x^2-(5-x)^2=0 | | –2c−10=–6c+10 | | 8(x+1)-5(x-3)=4(3x+1)+10 | | Ax.75=3.4 | | 6(2m+1)=2(24-m) | | 30=10+0.50x | | 8(2c-5)=16c-40 | | /3^nX9=81 | | 8=10+0.50x | | 3x+2(x-4)=4(x-1)+× | | 6=10+0.50x | | 7y-3=10(y=-1) | | −35=9j−35=9j | | MK=3x5x | | .06x=110 | | 2(m−4)=−62(m−4)=−6 | | 2d+36=-3d-544 | | 10a+14=7a+59 | | A+3c=80 | | A=(5,0)eB=(0,2) | | 7r+10=3r+5- | | 51x=32 | | 51​ x=32 | | x+x-5=266 | | 2y+8=3y-10 | | 10q-10=6q+10 |

Equations solver categories