If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-(7/6)x+1/3=0
Domain of the equation: 6)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
x2-(+7/6)x+1/3=0
We add all the numbers together, and all the variables
x^2-(+7/6)x+1/3=0
We multiply parentheses
x^2-7x^2+1/3=0
We multiply all the terms by the denominator
x^2*3-7x^2*3+1=0
Wy multiply elements
3x^2-21x^2+1=0
We add all the numbers together, and all the variables
-18x^2+1=0
a = -18; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-18)·1
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*-18}=\frac{0-6\sqrt{2}}{-36} =-\frac{6\sqrt{2}}{-36} =-\frac{\sqrt{2}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*-18}=\frac{0+6\sqrt{2}}{-36} =\frac{6\sqrt{2}}{-36} =\frac{\sqrt{2}}{-6} $
| 5/7x+15=60 | | 25x2-16=0 | | b+7/12=11/12 | | 25x^2–16=0 | | 63=3x+19 | | 5x+18/10=x/5 | | (x-5)(x+9)=9 | | 7x+24=3x-16 | | x+64+1/4=104+7/12 | | 16k+22=4(-3k+10)-k | | 2x-3(-6x-6)=158 | | x+641/4=1047/12 | | 9x+10=12×-11 | | 5x-8=35x-68 | | 2x-3-6x-6=158 | | 3/4x-12=30 | | 1/5(x+25)=4x+100 | | 4/5=n/10 | | -16+r=-20 | | 10x-16=16x+8 | | 1/5(x-25)=4x+100 | | X-9=3x-13 | | u-6=1 | | 16x^2+7x-23=0 | | 34=6x-8 | | p/15=-20 | | x+651/3=1045/6 | | 3x+8=10+x | | 11x-2=33x-3 | | 8/9x+30=3/9x+45 | | 44–x+2x=50 | | 1/3h=6;h=3 |