If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-12x-22=0
We add all the numbers together, and all the variables
x^2-12x-22=0
a = 1; b = -12; c = -22;
Δ = b2-4ac
Δ = -122-4·1·(-22)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{58}}{2*1}=\frac{12-2\sqrt{58}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{58}}{2*1}=\frac{12+2\sqrt{58}}{2} $
| -t-4/6=1 | | 3(5x-7)-2(9x-11)=-4(8x–13)+7 | | 20a-4=5a | | 4p+1=4(p+10) | | 5/6x+8=1/4x-6 | | n2+19n+60=0 | | 2/3(x-9)=-10 | | -2x/3+4x/9=-3x/2+10 | | 5x-6x=48+36 | | y-1/7=5/7 | | z-7=20z-10 | | 12=-r/6+11 | | 10a+3a-10a-2a=4 | | 7+10t=17 | | 7y+3=5 | | 3/5+z=1;z | | A+b=80 | | 11z-10z+3z=16 | | -4(p+1)=24 | | 3(2/9x-1)=1-2/3(x+1)+4/3 | | 7x–4=3x+6 | | 20x(25+30)=1100 | | 9n-5n-4n+3n=9 | | 4.9x+3.6x+5.8=82.2 | | 12.1=12.1+y;y | | 4(1x-2)=12 | | 1.5y-3=1.5y+8 | | 14z+2z-13z+4z+3z=20 | | 20a-4=22 | | 5c+15=-25 | | 2.5x-6=-5x-9 | | -18=6(x-8) |