If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-13=19
We move all terms to the left:
x2-13-(19)=0
We add all the numbers together, and all the variables
x^2-32=0
a = 1; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·1·(-32)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*1}=\frac{0-8\sqrt{2}}{2} =-\frac{8\sqrt{2}}{2} =-4\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*1}=\frac{0+8\sqrt{2}}{2} =\frac{8\sqrt{2}}{2} =4\sqrt{2} $
| -49=b2–14b | | a2=-9a–8 | | w^2–64=0 | | w2–64=0 | | 2.x2+6x+9=0 | | t2+5t=36 | | 4x+9x=105 | | 3+9.8x+9=3.8x-16-3.8x | | X+3y=162 | | 3x^-5=43 | | ((36)2)3=6x | | x35/x=10 | | 7x^2-159x-252=0 | | 4=x0.5 | | 3x=–29 | | X2+4s-21=0 | | 5x^2+70x+73=625 | | 5/(x+3)=4/24 | | 5/x+3=4/24 | | (4(x+2))^2+(x+3)^2=25^2 | | (x^2)(x)=0 | | (X*0,25)+(x*0,25*4)+(x*0,25*60)=100 | | 8x^2-18x-57=0 | | 3(x+2)+(x-4)=28 | | 6m+8=28(P=0) | | 3(X)+y=82 | | 21+x/4=21-x/3 | | 4x-36=106 | | x2+13=16 | | 7(x+2)+8(x-3)=2(x+2) | | 5y–2(2y–7)=2(3y–1)+7/2 | | 2(x-3)+36=7(x-2) |