If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-14=5
We move all terms to the left:
x2-14-(5)=0
We add all the numbers together, and all the variables
x^2-19=0
a = 1; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·1·(-19)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{19}}{2*1}=\frac{0-2\sqrt{19}}{2} =-\frac{2\sqrt{19}}{2} =-\sqrt{19} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{19}}{2*1}=\frac{0+2\sqrt{19}}{2} =\frac{2\sqrt{19}}{2} =\sqrt{19} $
| u+3u-3u+5u=12 | | 2(2x+5)+4=1x+9 | | 3x+5=127 | | 3(x+1)-2=-11 | | 7n-10=-10+7n | | -1/2x+5.5=-x | | -47=1-6u | | 9x+25=13x-18 | | b*(3)/(2)*90*2b-90*b+45=540 | | 2(2x+5)+4=10x+7 | | h −1=3 | | 3x+-4=1+-2x | | 2(2x+5)+4=10x+8 | | 5u-9=-6+5u | | 2y=5.8 | | -11s+5=2s+5 | | 2(2x+5)+4=10x+4 | | 3x+50=40 | | 2(2x+5)+4=10x+3 | | -2x-40=8(1-×) | | d+4.45=7.25 | | 2(2x+5)+4=10x+9 | | 2(2x+5)+4=9x+10 | | 3v+10=-8+6v | | 2(2x+5)+4=9x+2 | | 7/3y-8=-1 | | 10x+12+3x-2=73 | | 9x+24=3(4+2x) | | 2(2x+5)+4=9x+1 | | 1+29=a | | 5/6x-10=-20 | | 2(2x+5)+4=9x+5 |