If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-14x-48=0
We add all the numbers together, and all the variables
x^2-14x-48=0
a = 1; b = -14; c = -48;
Δ = b2-4ac
Δ = -142-4·1·(-48)
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{97}}{2*1}=\frac{14-2\sqrt{97}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{97}}{2*1}=\frac{14+2\sqrt{97}}{2} $
| 63=9(2-d) | | 1a−4=47a−3 | | -3(x–7)+2=20 | | p8=384 | | 17x-2=7x=8 | | -5x-2(4x-28)=-61 | | x2-8x+7=0 | | n/9=5/17 | | p/32=12/8 | | 17(x–2)=-34 | | 2(3x-2)+6=-8+x | | 20=-6d+8d | | 6s=20+8s | | -2(b-7)=-(1-3b) | | (3x+1)+(2x+1)=x+1 | | 8(3x+5=2x-4 | | a/9=5/17 | | 12(b-7)=-(1-3b) | | 825/2=x/1.5 | | q-10-4q=-4q-3 | | (3y-6)+8=14 | | 7(13-4y)+2y=-13 | | 3(x-1)=4(x+3) | | a/4−21=7 | | 5+6(3s-5)=-3+2(8s-1) | | 3x-9=14+2(x-1) | | 3x+4(4x-8)=44 | | -5p+48=13 | | x/11=10/12 | | 2x-6+5x=3-x+7 | | 1/m+1/m+1=5/2m+2 | | 5x+27=3x+37 |