If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-17x+50=0
We add all the numbers together, and all the variables
x^2-17x+50=0
a = 1; b = -17; c = +50;
Δ = b2-4ac
Δ = -172-4·1·50
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-\sqrt{89}}{2*1}=\frac{17-\sqrt{89}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+\sqrt{89}}{2*1}=\frac{17+\sqrt{89}}{2} $
| -1/4(5x-1)=7 | | 2x+5÷4=5x-2 | | y2+49=0 | | -21n-49=-31-5 | | 3=-16t^2+166t+0 | | 7x+16=14+8-5x | | 3n–2=4 | | 2=0y | | 3^5x-2=4 | | 400-3a=160 | | 10x-19=3x+5 | | (3x+4)+(8x+4)=140 | | 59=7y+3 | | x^2-25-(x+5)=0 | | 6x+4=2(2x-) | | -45=10t-5t^2 | | 5x^2+30x+14=0 | | -96=-6(m+8) | | 0=7t-5t^2 | | -104=4(6b+4) | | 3a+a=4a | | X^2(x+1)=636 | | k-4=0 | | 18x-6=20x-1218x-6=20x-1218x-6=20x-1218x-6=20x-12 | | 18x-6=20x-1218x-6=20x-1218x-6=20x-12 | | -13=x/4-10 | | 18x-6=20x-1218x-6=20x-12 | | (2x+0,3)^2-5(2x+0,3)+4=0 | | -9m-10=53 | | 4x+6/2=x+6 | | 2x+2=30+3x-1=30 | | 5x+16/2=x+15 |