If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-18x-40=0
We add all the numbers together, and all the variables
x^2-18x-40=0
a = 1; b = -18; c = -40;
Δ = b2-4ac
Δ = -182-4·1·(-40)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-22}{2*1}=\frac{-4}{2} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+22}{2*1}=\frac{40}{2} =20 $
| 17x+17=4x+-16 | | x2+9x+1=-7 | | q^2(+3-11q^2*20)=0 | | 2-q(11/10)+q^2(3/20)=0 | | 2-(11q/10)+(3q^2/20)=0 | | (4)/(9)m=-24 | | q(2-3q)=40 | | 4(1/2x+3/4)=x-1.5 | | 2(r+9=24 | | (7/2t)−2=4+7t | | 0=4x-3=11 | | 81^-x-12=729^5x+10 | | 5(p+17)=2p-3 | | -3x+24=-8x-11 | | 5x-44=-2x+3 | | 28=2(x-2)-8x | | -28=2(x-2)-18 | | 3v=-0.4 | | 4^5x=1/16 | | 3x^-4-8x^-2+4=0 | | t6+12=24 | | 4h-7h=17 | | 5(3)+5y=10 | | w2+5=10 | | 15x+-17=1x+-6 | | -20x+4=-1x+-10 | | 34=3(7v-2) | | -3x+8=-6x+-6 | | X+2x-1°+x+5°=360° | | 3(x—7)=2x+4 | | 12x+5–5x–3=13x+12 | | x–26=29 |