If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-19x+84=0
We add all the numbers together, and all the variables
x^2-19x+84=0
a = 1; b = -19; c = +84;
Δ = b2-4ac
Δ = -192-4·1·84
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-5}{2*1}=\frac{14}{2} =7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+5}{2*1}=\frac{24}{2} =12 $
| -6=3b-b | | 6x^2=8x+110 | | -83+12x=9x+28 | | 18f=162 | | 2x+5+x=7+4x-10 | | (6x+18)+(x+93)=180 | | (b-3)-(b+8)=9b | | 6x+18=x+94 | | 3.2x+2x=2693 | | 2y+7=-15 | | 56=1/2h(10+1) | | -6(1-6r)=282 | | 4=9+5x | | 4.8k+12.38=16.06+5.2k | | (2x+1)(x—1/2)=0 | | 20-6x=x-15 | | 8a+6+91+10=304 | | 0.9(c-10)=12.6 | | -3=2x-21 | | x+4x+25x+25=180 | | 3/3q+11=8 | | 7=3w-2w | | 10x+17=2x+1 | | -10=w-32=6 | | -3n-8(-1+5n)=352 | | 15/3=y/7 | | x+4x+25=180 | | |5x+2|+5=62 | | 20-9x=-16 | | 3(2u+2)+5u=5(u+6)-2u | | 12g-4g+6g+6g=12 | | Y=x4 |