x2-1=(x+1)(3x-5)

Simple and best practice solution for x2-1=(x+1)(3x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2-1=(x+1)(3x-5) equation:



x2-1=(x+1)(3x-5)
We move all terms to the left:
x2-1-((x+1)(3x-5))=0
We add all the numbers together, and all the variables
x^2-((x+1)(3x-5))-1=0
We multiply parentheses ..
x^2-((+3x^2-5x+3x-5))-1=0
We calculate terms in parentheses: -((+3x^2-5x+3x-5)), so:
(+3x^2-5x+3x-5)
We get rid of parentheses
3x^2-5x+3x-5
We add all the numbers together, and all the variables
3x^2-2x-5
Back to the equation:
-(3x^2-2x-5)
We get rid of parentheses
x^2-3x^2+2x+5-1=0
We add all the numbers together, and all the variables
-2x^2+2x+4=0
a = -2; b = 2; c = +4;
Δ = b2-4ac
Δ = 22-4·(-2)·4
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-6}{2*-2}=\frac{-8}{-4} =+2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+6}{2*-2}=\frac{4}{-4} =-1 $

See similar equations:

| k+6=-2k-15 | | n+7-6=8n+7-8n-12 | | 7+3x/2=19 | | (3q+1)(q+7)=0 | | 5(x–7)=35x+12 | | S=18πr+πr^2 | | x=180-48+2x | | x^+1x−4=0 | | 8p+p=p-8p | | 1x-9=1/4x+3 | | 4n-5=3n+9 | | x^2+1x−4=0 | | (0.02232-2x)^2-42x=0 | | 6c+11=c+59 | | 12f-2(-3f+4)=0 | | 1/3n-4=3 | | 2w-6=0 | | 9x=15(x+2) | | 2x+626=x | | 14-z=18 | | 100=-7+r | | 33=p-6,71 | | k+1+8=-7k-7 | | –2y+2y+3=3 | | a+3.7=-16.9 | | 2•(x+1)=2 | | -9+1-2n+4n=n-1 | | 4p+5–7p=-1 | | -21=-3(1+6p) | | 5(3x+2)=-3(2x-4) | | 2(3w-8)=48 | | 5(3x+2=-3(2x-4) |

Equations solver categories