If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-1x=35
We move all terms to the left:
x2-1x-(35)=0
We add all the numbers together, and all the variables
x^2-1x-35=0
a = 1; b = -1; c = -35;
Δ = b2-4ac
Δ = -12-4·1·(-35)
Δ = 141
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{141}}{2*1}=\frac{1-\sqrt{141}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{141}}{2*1}=\frac{1+\sqrt{141}}{2} $
| 8v=7v-4 | | 50v+5=2 | | 9x-8.X=4 | | z=51 | | x+2(8.95)=23.65 | | x2-X=35 | | 5h=4h+4 | | -9.4=x/5+3.1 | | 4(3a-1)=16 | | 50+2v=200+5v | | 3/4x-2/5=13/10 | | -4-x=-16 | | 4.5*3.8=x | | 5p=8p-28+3p | | -t^2+2t+14=0 | | 2/3(3=9)=-2(2x+6) | | 0=-2x^2+9x-11 | | 3x-8.4=3-3x | | 5x-1(1x-18)=-2(1x+12 | | 9c=-6+10c | | x+6+3=(x+4) | | 6(2m+8)=10(m+3) | | -3x=7=-2 | | $7x=35$ | | x+2x−4=14(3x+4) | | 4x-3=+2x+5 | | 50+5v=200+2v | | 4x-5=+2x+5 | | 200+5v=50+2v | | 5x-5+62+x=180 | | −(−5−6x)=4(5x+3) | | 1. 5(x+2)=-30 |