If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-2187=0
We add all the numbers together, and all the variables
x^2-2187=0
a = 1; b = 0; c = -2187;
Δ = b2-4ac
Δ = 02-4·1·(-2187)
Δ = 8748
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8748}=\sqrt{2916*3}=\sqrt{2916}*\sqrt{3}=54\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-54\sqrt{3}}{2*1}=\frac{0-54\sqrt{3}}{2} =-\frac{54\sqrt{3}}{2} =-27\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+54\sqrt{3}}{2*1}=\frac{0+54\sqrt{3}}{2} =\frac{54\sqrt{3}}{2} =27\sqrt{3} $
| x7-2187=0 | | 5-4x6=x | | 5x+15-7=33 | | 3x-13=2x-4 | | 11x-7x=8x+5,x= | | .67*b=780 | | r+7.7=-3.8 | | 3x-6=10-7x | | -37=-2x+5 | | 3n÷2n-1=n | | 2+5x=12 | | √8x+5=√53 | | 3/8r-3/20=9/40 | | 4x+26=9x+6 | | 5/6-4/9p=41/2 | | h+14=-6 | | 14x-20=2(x+4) | | 4x^2–8x+20=0 | | d. X-23=159 | | d. X-23=160 | | k^2-2k-124=0 | | 4/7n-3/5=1 | | m/0.05-1.1=4.3 | | 0.064-a/0.4=0.049 | | 12/3g+5=20 | | 4-5(-3-4x)=5(8-x)+4 | | 7(y-15)=4(6+y) | | 4x+7=5x6 | | a/8+7=6 | | 6x1=4x+5 | | 3^x+4=5^x^-6 | | -6a-4=110 |